
Snort 2.9.9.x on Ubuntu 14 and 16

with Barnyard2, PulledPork, and BASE

Noah Dietrich
Noah@SublimeRobots.com

January 8, 2017

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

(CC BY-NC-SA 4.0)

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Contents

1 Introduction . 1
2 About This Guide . 1
3 Enabling OpenAppID . 2
4 Enviornment . 2
5 Ethernet Interface Names On Ubuntu 16 . 2
6 VMware Virtual Machine Configuration . 2
7 Installing Ubuntu . 3
8 Network Card Configuration . 3
9 Installing the Snort Pre-Requisites . 4
10 Installing Snort . 5
11 Configuring Snort to Run in NIDS Mode . 7
12 Writing a Simple Rule to Test Snort Detection . 10
13 Installing Barnyard2 . 12
14 Installing PulledPork . 15
15 Configuring PulledPork to Download Rulesets . 15
16 Creating Startup Scripts . 17

16.1 Upstart Startup Script - Ubuntu 14 . 18
16.2 systemD Startup Script - Ubuntu 16 . 19

17 BASE - A Web GUI for Snort . 20
18 Where To Go From Here . 22
A Appendix: ESXi and Snort in Promiscuous Mode . 24
B Apendix: Installing Snort Rules Manually . 25
C Apendix: Troubleshooting Barnyard2 . 26

1 Introduction

This guide will walk you through installing Snort as a NIDS (network intrusion detection system), with three
pieces of additional software to improve the functionality of Snort. This guide is written with the Snort host
as a VMware vSphere virtual machine, but can be easily used to install Snort on a physical machine or as a
virtual machine on another platform.

The latest version of this guide plus additional notes can be found at SublimeRobots.com.

This installer guide has been tested on the following versions of Ubuntu running on VMware vSphere 6:

• Ubuntu 14.04 Server LTS x86

• Ubuntu 14.04 Server LTS x64

• Ubuntu 16.04 Server x86

• Ubuntu 16.04 Server x64

While you can choose to install Snort without any supporting software and it will work just fine, it becomes
much more useful with a few additional software packages. These packages are:

Barnyard2:
Software that takes Snort output and writes to a SQL database, which reduces load on the system.

PulledPork:
Automatically downloads the latest Snort rules.

BASE:
A web-based graphical interface for viewing and clearing Snort events.

If you just want to setup Snort on a Ubuntu system without going through the work in this document, there
is a project called Autosnort that will install all the same software as this guide with a script. Optionally,
you could use a fully configured LiveCD like EasyIDS or Security Onion. The benefit of this guide over
Autosnort, EasyIDS, or Security Onion is that this guide walks you through installing each component,
explaining the steps as you go along. This will give you a better understanding of the software components
that make up Snort, and will allow you to configure Snort for your own needs.

Note: while this guide focuses on the current 2.9.9.x series release of Snort, these steps will most likely work
to install the older Snort 2.9.8.x series, and could be used to install Snort on older or derivative versions of
Ubuntu (Xubuntu, Mint, etc.). I have also been told that these instructions are helpful for installing Snort
on Debian systems, including on Raspberry Pi, but I have not verified that myself.

2 About This Guide

Passwords: This guide chooses to use simplistic passwords to make it obvious as to what is being done.
You should select your own secure passwords in place of these passwords.

Software Package Versions: This guide is written to install with the latest version of all software available,
except where noted for compatibility reasons. This guide should work with slightly newer or older versions
of all software packages, but ensuring compatibility is up to the individual user. If you have issues when
installing a different version of any software than what this guide uses, I recommend that you try installing
the exact version this guide uses in order to determine if the error is with the specific software version or
is due to a different issue. Additionally, this guide tries to use software from official Ubuntu repositories as
much as possible, only downloading software from trusted 3rd party sites (such as snort.org only when no
package is available from official repositories.

1

http://SublimeRobots.com
https://github.com/da667/Autosnort
http://sourceforge.net/projects/easyids/
https://securityonion.net/
snort.org

Software versions used in this guide:

• Snort 2.9.9.0

• Barnyard2 2-1.14 (current master)

• PulledPork 0.7.3 (current master)

• BASE 1.4.5

Administrator Accounts: This guide assumes that you are logged into the system as a normal user, and
will run all administrative commands with sudo. This helps to identify what commands require administra-
tive credentials, and which do not. We will also create a non-privileged user named snort that will be used
to run all applications when setting up services, following current best security practices.

3 Enabling OpenAppID

If you are interested in adding OpenAppID support to Snort, please see this article on my blog. For more
information about OpenAppID, please see Firing up OpenAppID.

4 Enviornment

As stated above, this guide was written geared towards installing Snort as a virtual machine running on an
VMware vSphere hypervisor. The vSphere hypervisor is a free product from vMware, and which I highly
recommend for testing software due to the ability to create snapshots. If you choose to install Snort outside
of a virtual machine, the steps below should be the same, except for a few VMware specific steps that should
be fairly obvious once you’ve worked through this guide.

5 Ethernet Interface Names On Ubuntu 16

Important note for people running Ubuntu 16: Starting with Ubuntu 15.10, network interfaces no
longer follow the ethX standard (eth0, eth1, ...). Instead, interfaces names are assigned as Predictable
Network Interface Names. This means you need to check the names of your interfaces using ifconfig, since
you will need to reference the name of your interface for many steps in this guide. In my case, what was
originally eth0 is now ens160. If you are running Ubuntu 16, anywhere in this guide you see eth0, you will
need to replace with your new interface name.

6 VMware Virtual Machine Configuration

If you are using VMware vSphere to host your Snort virtual machine, when creating the virtual machine,
make sure to select the VMXNET 3 network adapter (not the default adapter) when creating the client
virtual machine, as it works better for Snort1 2.

This guide assumes that you have created a virtual machine with a single network adapter that will be used
for both administrative control (over SSH) as well as for Snort to listen on for traffic. You can easily add
more adapters when setting up the system or at a later date, you just need to make sure to specify the

1https://isc.sans.edu/diary/Running+Snort+on+VMWare+ESXi/15899
2http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1001805

2

http://sublimerobots.com
http://blog.snort.org/2014/03/firing-up-openappid.html
http://www.vmware.com/products/vsphere-hypervisor/
http://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/
http://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/
https://isc.sans.edu/diary/Running+Snort+on+VMWare+ESXi/15899
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1001805

correct adapter Snort should listen on at runtime (if you setup your system using this guide, you should be
able to make these configuration changes without issue).

7 Installing Ubuntu

This guide will assume that you have installed one of the supported versions of Ubuntu with all the default
settings.

Snort does not need an IP address assigned to the interface that it is listening on, and in many configurations
snort will listen on interfaces that do not have an IP address configured. For this guide, it is easier to manage
the system remotely via ssh if the interface is reachable. In a production environment, it is recommended
that you user one interface on your Snort server for management, and have Snort listen on other interfaces,
but this is not required. By default Ubuntu will use DHCP to auto-configure an address, if this is the case,
you can verify your ip address by running ifconfig eth0. If you do not have a DHCP server assigning
IP addresses, configure one on your Snort system manually. You will need internet connectivity in order to
download the required packages and software tarballs.

Once you have logged in for the first time and verified internet connectivity, make sure the system is up to
date, and install openssh-server (so we can remotely-manage the system). Reboot after installation to make
sure all patches are applied.

Install Updates and reboot:

sudo apt-get update

sudo apt-get dist-upgrade -y

sudo apt-get install -y openssh-server

sudo reboot

If you are installing Snort on a VMware vSphere server, you no longer need to manually install vmware
tools, they are part of the open-vm-tools package which is installed by default.

8 Network Card Configuration

From http://manual.snort.org/node7.html:

Some network cards have features named “Large Receive Offload” (lro) and “Generic Receive
Offload” (gro). With these features enabled, the network card performs packet reassembly before
they’re processed by the kernel. By default, Snort will truncate packets larger than the default
snaplen of 1518 bytes. In addition, LRO and GRO may cause issues with Stream5 target-based
reassembly. We recommend that you turn off LRO and GRO.

To disable LRO and GRO for any interface that Snort listens on, we will use the ethtool command in the
network interface configuration file /etc/network/interfaces. We use vi to edit the network interfaces
file:

sudo vi /etc/network/interfaces

Append the following two lines for each network interface, making sure to change eth0 to match the interface
you are working on, since your interface names may be different, especially on Ubuntu 16:

post-up ethtool -K eth0 gro off

post-up ethtool -K eth0 lro off

an example of how the /etc/network/interfaces file should look for a single interface:

3

https://help.ubuntu.com/community/VMware/Tools
http://manual.snort.org/node7.html

This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

The loopback network interface

auto lo

iface lo inet loopback

The primary network interface

auto eth0

iface eth0 inet dhcp

post-up ethtool -K eth0 gro off

post-up ethtool -K eth0 lro off

Restart networking (replace eth0 with your interfaces with below) and verify that LRO and GRO are dis-
abled:

user@snortserver:~$ sudo ifconfig eth0 down && sudo ifconfig eth0 up

user@snortserver:~$ ethtool -k eth0 | grep receive-offload

generic-receive-offload: off

large-receive-offload: off

user@snortserver:~$

if the interfaces do not show LRO and GRO as off, reboot and check again (it can be difficult to get Ubuntu
to reload the network configuration without a reboot).

9 Installing the Snort Pre-Requisites

Snort has four main pre-requisites:
pcap (libpcap-dev) available from the Ubuntu repository
PCRE (libpcre3-dev) available from the Ubuntu repository
Libdnet (libdumbnet-dev) available from the Ubuntu repository
DAQ (http://www.snort.org/downloads/) compiled from source

First we want to install all the tools required for building software. The build-essentials package does
this for us:

sudo apt-get install -y build-essential

Once our build tools are installed, we install all Snort pre-requisites that are available from the Ubuntu
repositories3:

sudo apt-get install -y libpcap-dev libpcre3-dev libdumbnet-dev

The Snort DAQ (Data AcQuisition library)has a few pre-requisites that need to be installed:

sudo apt-get install -y bison flex

In this guide, we will be downloading a number of tarbals for various software packages. We will create a
folder called snort src to keep them all in one place:

3Many guides that install Snort on Ubuntu have you download libdnet from its homepage http://libdnet.sourceforge.

net/. This is possible and will work fine. However, the libdumbnet-dev Ubuntu package provides the same software (do not
install the libdnet package from Ubuntu archives, as it is an un-related package and does not provide the required libdent
libraries). If you want to compile the libdent libraries from source and you are running a 64-bit version Ubuntu, use the -fPIC

flag during the ’configure’ stage.

4

http://www.snort.org/downloads/
http://libdnet.sourceforge.net/
http://libdnet.sourceforge.net/

mkdir ~/snort_src

cd ~/snort_src

Download and install the latest version of DAQ from the Snort website. The steps below use wget to
download version 2.0.6 of DAQ, which is the latest version at the time of writing this guide.

cd ~/snort_src

wget https://snort.org/downloads/snort/daq-2.0.6.tar.gz

tar -xvzf daq-2.0.6.tar.gz

cd daq-2.0.6

./configure

make

sudo make install

when you run ./configure, you should see the following output that shows which modules are being configured
and which will be avaliable when you compile DAQ:

Build AFPacket DAQ module.. : yes

Build Dump DAQ module...... : yes

Build IPFW DAQ module...... : yes

Build IPQ DAQ module....... : no

Build NFQ DAQ module....... : no

Build PCAP DAQ module...... : yes

Build netmap DAQ module.... : no

This tells you which DAQ modules have been configured. For most installations, you only need AFPacket
and PCAP. More information about the various DAQ modules can be found here. The PCAP DAQ module
is the default module, used for getting packets into Snort from a file or an interface. AFPacket is used
for inline mode (Snort as an IPS). For more advanced installations, you might want the NFQ or netmap
modules. This guide doesn’t cover installing or using those modules, but if you need NFQ, please install the
libnetfilter-queue-dev package before installing DAQ.

10 Installing Snort

To install Snort on Ubuntu, there is one additional required pre-requisite that needs to be installed that is
not mentioned in the documentation: zlibg which is a compression library.

There are four optional libraries that improves fuctionality: liblzma-dev three of which provide decom-
pression of swf files (adobe flash), openssl, and libssl-dev which both provide SHA and MD5 file signa-
tures:

sudo apt-get install -y zlib1g-dev liblzma-dev openssl libssl-dev

finally we need the development libraries for Nghttp2: a HTTP/2 C Library which implements the HPAC
header compression algorithm. In Ubuntu 16 the install is easy:

Ubuntu 16 only (not Ubuntu 14)

sudo apt-get install -y libnghttp2-dev

For Ubuntu 14, you need to compile the header libraries from source:

Ubuntu 14 only (not Ubuntu 16)

sudo apt-get install -y autoconf libtool pkg-config

cd ~/snort_src

wget https://github.com/nghttp2/nghttp2/releases/download/v1.17.0/nghttp2-1.17.0.tar.gz

5

https://snort.org/faq/readme-daq
https://nghttp2.org/
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7541

tar -xzvf nghttp2-1.17.0.tar.gz

cd nghttp2-1.17.0

autoreconf -i --force

automake

autoconf

./configure --enable-lib-only

make

sudo make install

Once all pre-requisites are installed, we are ready to download the Snort source tarball, compile, and then
install. The --enable-sourcefire option gives Packet Performance Monitoring (PPM)4 5, which lets us do
performance monitoring for rules and pre-processors, and builds Snort the same way that the Snort team
does:

cd ~/snort_src

wget https://snort.org/downloads/snort/snort-2.9.9.0.tar.gz

tar -xvzf snort-2.9.9.0.tar.gz

cd snort-2.9.9.0

./configure --enable-sourcefire

make

sudo make install

Note: As long as you don’t see configure: error: "Fatal!" when running ./configure, you are ok
to continue. If you get an error, then you should resolve the error before continuing. you can pipe the
output from ./configure into grep "... no" to get a list of all software that didn’t install. You can run
./configure more than once, first to make sure that there are no overall issues, then again to see what
optional components didn’t install: ./configure | grep "... no" (you could also use the tee command
to save the output to screen and file).

Optional: If you are interested in seeing the other compile-time options that are available, run ./configure

--help to get a list of all compile-time options. The Snort team has tried to ensure that the default
settings are good for most basic installations, so you shouldn’t need to change anything unless you are
trying to do something special. A couple of options you might consider based on your specific situation are
--enable-inline-init-failopen which allows Snort running in inline mode to still pass traffic between
interfaces if the Snort daemon fails, and --enable-large-pcap, which enables PCAP files larger than 2
GB.

Run the following command to update shared libraries (you’ll get an error when you try to run Snort if you
skip this step):

sudo ldconfig

Place a symlink to the Snort binary in /usr/sbin:

sudo ln -s /usr/local/bin/snort /usr/sbin/snort

Test Snort by running the binary as a regular user, passing it the -V flag (which tells Snort to verify itself
and any configuration files passed to it). You should see output similar to what is shown below (although
exact version numbers may be slightly different):

user@snortserver:~$ snort -V

,,_ -*> Snort! <*-

o")~ Version 2.9.9.0 GRE (Build 56)

'''' By Martin Roesch & The Snort Team: http://www.snort.org/contact#team

4--enable-sourcefire: http://blog.snort.org/2011/09/snort-291-installation-guide-for-centos.html
5PPM: https://www.snort.org/faq/readme-ppm

6

http://blog.snort.org/2011/09/snort-291-installation-guide-for-centos.html
https://www.snort.org/faq/readme-ppm

Copyright (C) 2014-2016 Cisco and/or its affiliates. All rights reserved.

Copyright (C) 1998-2013 Sourcefire, Inc., et al.

Using libpcap version 1.7.4

Using PCRE version: 8.38 2015-11-23

Using ZLIB version: 1.2.8

user@snortserver:~$

11 Configuring Snort to Run in NIDS Mode

Since we don’t want Snort to run as root, we need to create an unprivileged account and group for the
daemon to run under (snort:snort). We will also create a number of files and directories required by
Snort, and set permissions on those files. Snort will have the following directories: Configurations and rule
files in /etc/snort Alerts will be written to /var/log/snort Compiled rules (.so rules) will be stored in
/usr/local/lib/snort dynamicrules

Create the snort user and group:

sudo groupadd snort

sudo useradd snort -r -s /sbin/nologin -c SNORT_IDS -g snort

Create the Snort directories:

sudo mkdir /etc/snort

sudo mkdir /etc/snort/rules

sudo mkdir /etc/snort/rules/iplists

sudo mkdir /etc/snort/preproc_rules

sudo mkdir /usr/local/lib/snort_dynamicrules

sudo mkdir /etc/snort/so_rules

Create some files that stores rules and ip lists

sudo touch /etc/snort/rules/iplists/black_list.rules

sudo touch /etc/snort/rules/iplists/white_list.rules

sudo touch /etc/snort/rules/local.rules

sudo touch /etc/snort/sid-msg.map

Create our logging directories:

sudo mkdir /var/log/snort

sudo mkdir /var/log/snort/archived_logs

Adjust permissions:

sudo chmod -R 5775 /etc/snort

sudo chmod -R 5775 /var/log/snort

sudo chmod -R 5775 /var/log/snort/archived_logs

sudo chmod -R 5775 /etc/snort/so_rules

sudo chmod -R 5775 /usr/local/lib/snort_dynamicrules

We want to change ownership of the files we created above as well to make sure Snort can access the files it
uses:

Change Ownership on folders:

sudo chown -R snort:snort /etc/snort

sudo chown -R snort:snort /var/log/snort

sudo chown -R snort:snort /usr/local/lib/snort_dynamicrules

Snort needs some configuration files and the dynamic preprocessors copied from the Snort source tarball into
the /etc/snort folder.

The configuration files are:

7

• classification.config

• file magic.conf

• reference.config

• snort.conf

• threshold.conf

• attribute table.dtd

• gen-msg.map

• unicode.map

To copy the configuration files and the dynamic preprocessors, run the following commands:

cd ~/snort_src/snort-2.9.9.0/etc/

sudo cp *.conf* /etc/snort

sudo cp *.map /etc/snort

sudo cp *.dtd /etc/snort

cd ~/snort_src/snort-2.9.9.0/src/dynamic-preprocessors/build/usr/local/lib/snort_dynamicpreprocessor/

sudo cp * /usr/local/lib/snort_dynamicpreprocessor/

We now have the following directory layout and file locations:
Snort binary file: /usr/local/bin/snort

Snort configuration file: /etc/snort/snort.conf

Snort log data directory: /var/log/snort

Snort rules directories: /etc/snort/rules

/etc/snort/so rules

/etc/snort/preproc rules

/usr/local/lib/snort dynamicrules

Snort IP list directories: /etc/snort/rules/iplists

Snort dynamic preprocessors: /usr/local/lib/snort dynamicpreprocessor/

Our Snort directory listing looks like this:
user@snortserver:~$ tree /etc/snort

/etc/snort

|-- attribute_table.dtd

|-- classification.config

|-- file_magic.conf

|-- gen-msg.map

|-- preproc_rules

|-- reference.config

|-- rules

| |-- iplists

| | |-- black_list.rules

| | |-- white_list.rules

| |-- local.rules

|-- sid-msg.map

|-- snort.conf

|-- so_rules

|-- threshold.conf

|-- unicode.map

We now need to edit Snort’s main configuration file, /etc/snort/snort.conf. When we run Snort with

8

this file as an argument, it tells Snort to run in NIDS mode.
We need to comment out all of the individual rule files that are referenced in the Snort configuration file,
since instead of downloading each file individually, we will use PulledPork to manage our rulesets, which
combines all the rules into a single file. The following line will comment out all rulesets in our snort.conf

file (there are about 100 lines to comment out, beginning at line 540):

sudo sed -i "s/include \$RULE_PATH/#include \$RULE_PATH/" /etc/snort/snort.conf

We will now manually change some settings in the snort.conf file, using your favourite editor:

sudo vi /etc/snort/snort.conf

Change the following lines to meet your environment:

Line 45, HOME NET should match your internal (friendly) network. In the below example our HOME NET is
10.0.0.0 with a 24-bit subnet mask (255.255.255.0)6:

ipvar HOME_NET 10.0.0.0/24

Note: You should not set EXTERNAL NET to !$HOME NET as recommended in some guides, since it can cause
Snort to miss alerts.

Note: it is vital that your HOME NET match the IP subnet of the interface that you want Snort to listen
on. Please use ifconfig | grep "inet add" to ensure you have the right address and mask set. Often
this will be a 192.168.1.x or 10.0.0.x IP address.

Set the following file paths in snort.conf, beginning at line 104:

var RULE_PATH /etc/snort/rules

var SO_RULE_PATH /etc/snort/so_rules

var PREPROC_RULE_PATH /etc/snort/preproc_rules

var WHITE_LIST_PATH /etc/snort/rules/iplists

var BLACK_LIST_PATH /etc/snort/rules/iplists

In order to make testing Snort easy, we want to enable the local.rules file, where we can add rules that
Snort can alert on. Un-comment (remove the hash symbol) from line 546 so it looks like this:

include $RULE_PATH/local.rules

Once the configuration file is ready, we will have Snort verify that it is a valid file, and all necessary files
it references are correct. We use the -T flag to test the configuration file, the -c flag to tell Snort which
configuration file to use, and -i to specify the interface that Snort will listen on (this is a new requirement
beginning with the 2.9.8.x version of Snort when active response is enabled). Run sudo snort -T -c

/etc/snort/snort.conf -i eth0. Run this command as shown below and look for the following output
(only the last few lines of the output are shown for clarity):

user@snortserver:~$ sudo snort -T -i eth0 -c /etc/snort/snort.conf

(...)

Snort successfully validated the configuration!

Snort exiting

user@snortserver:~$

Note for Ubuntu 16: Interface names have changed, and are system specific (no longer listed as ethN). In
the above command, you need to replace eth0 with the name of your interface (a valid interface), as shown
with the ifconfig command (in my case it is ens160).

6http://books.gigatux.nl/mirror/snortids/0596006616/snortids-CHP-5-SECT-1.html

9

http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node26.html
http://books.gigatux.nl/mirror/snortids/0596006616/snortids-CHP-5-SECT-1.html

It is a good idea to scroll up through the output from this command to get a feel for what Snort is loading.
A lot of it won’t make sense at this time, but it will become more clear as you work more with Snort. Look
for any errors and warnings listed.

12 Writing a Simple Rule to Test Snort Detection

At this stage, Snort does not have any rules loaded (our rule files referenced in snort.conf are empty). You
can verify that Snort has not loaded any rules if you scroll up through the output from the previous command
and look for: 0 Snort rules read. To test Snort’s detection abilities, let’s create a simple rule that will
cause Snort to generate an alert whenever Snort sees an ICMP “Echo request” or “Echo reply” message,
which is easy to generate with the ubiquitous ping utility (this makes for easy testing of the rule).

Paste the following single line into the empty local rules file: /etc/snort/rules/local.rules (note, this
should go on one line):

alert icmp any any -> $HOME_NET any (msg:"ICMP test detected"; GID:1; sid:10000001; rev:001; classtype:icmp-

event;)

Barnyard2 doesn’t read meta-information about alerts from the local.rules file. Without this information,
Barnyard2 won’t know any details about the rule that triggered the alert, and will generate non-fatal errors
when adding new rules with PulledPork (done in a later step). To make sure that barnyard2 knows that
the rule we created with unique identifier 10000001 has the message ”ICMP Test Detected”, as well as
some other information (please see this blog post for more information). We add the following line to the
/etc/snort/sid-msg.map file:

#v2

1 || 10000001 || 001 || icmp-event || 0 || ICMP Test detected || url,tools.ietf.org/html/rfc792

When you un-commented line 546 above (include $RULE PATH/local.rules) you were telling Snort that
the local.rules file should be loaded by Snort. When Snort loads that file on start-up, it will see the rule
you created, and use that rule on all traffic the interface sees. In this case, when we created the rule, we told
Snort that it should generate an alert when it sees an ICMP ping.

10

http://blog.snort.org/2013/05/barnyard-v21-13-has-been-released.html

Since we made changes to the Snort configuration, we should test the configuration file again:

sudo snort -T -c /etc/snort/snort.conf -i eth0

This time if you scroll up through the output, you will find that one rule (the one we created in local.rules,
and loaded by the include directive in snort.conf) has been loaded:

(...)

+++

Initializing rule chains...

1 Snort rules read

1 detection rules

0 decoder rules

0 preprocessor rules

1 Option Chains linked into 1 Chain Headers

0 Dynamic rules

+++

+-------------------[Rule Port Counts]---------------------------------------

| tcp udp icmp ip

| src 0 0 0 0

| dst 0 0 0 0

| any 0 0 1 0

| nc 0 0 1 0

| s+d 0 0 0 0

+--

Now that we know that Snort correctly loads our rule and our configuration, we can start snort in NIDS
mode, and tell it to output any alerts right to the console. We will run Snort from the command line, using
the following flags:

-A console The ‘console’ option prints fast mode alerts to stdout
-q Quiet mode. Don’t show banner and status report.
-u snort Run Snort as the following user after startup
-g snort Run Snort as the following group after startup
-c /etc/snort/snort.conf The path to our snort.conf file
-i eth0 The interface to listen on (change to your interface if different)

Note: If you are running Ubuntu 16, remember that your interface name is not eth0.

$ sudo /usr/local/bin/snort -A console -q -u snort -g snort -c /etc/snort/snort.conf -i eth0

When you execute this command, you will not initially see any output. Snort is running, and is processing
all packets that arrive on eth0 (or whichever interface you specified with the -i flag). Snort compares each
packet to the rules it has loaded (in this case our single ICMP Ping rule), and will then print an alert to the
console when a packet matches our rule.

From another computer, ping the IP address of eth0 on the Snort computer, and you should see console
output similar to what is displayed below. Do not ping from your Snort server, as the traffic will not be
captured by Snort. This output is the individual alerts that Snort is writing to the console when it matches
packets to the ICMP rule you created. In the below example, the Snort server is listening on eth0 with and
IP address of 10.0.0.105, and the computer generating the ping is 10.0.0.59.

12/06−12:14:28.908206 [∗∗] [1:10000001:1] ICMP test detected [∗∗] [Classification: Generic ICMP event] [Priority: 3] {ICMP} 10.0.0.59 −> 10.0.0.105
12/06−12:14:28.908241 [∗∗] [1:10000001:1] ICMP test detected [∗∗] [Classification: Generic ICMP event] [Priority: 3] {ICMP} 10.0.0.105 −> 10.0.0.59
12/06−12:14:29.905893 [∗∗] [1:10000001:1] ICMP test detected [∗∗] [Classification: Generic ICMP event] [Priority: 3] {ICMP} 10.0.0.59 −> 10.0.0.105
ˆC∗∗∗ Caught Int−Signal

Use ctrl-c to stop Snort from running. Note that Snort has saved a copy of this information in /var/log/snort,
with the name snort.log.nnnnnnnnn (the numbers may be different). At this point Snort is running cor-
rectly in NIDS mode and generating alerts.

11

13 Installing Barnyard2

It is resource intensive for Snort to write events in human-readable mode, either to the console or to text
files, as we have done above. Ideally, we would like Snort events to be stored in a MySQL database so we
can view, search, and profile the events. To efficiently get Snort events into a MySQL database, we use
Barnyard2. We configure Snort to output events in binary form to a folder, and then have Barnyard2 read
those events asynchronously and insert them to our MySQL database.

First install the Barnyard2 pre-requisites:

sudo apt-get install -y mysql-server libmysqlclient-dev mysql-client autoconf libtool

The install will prompt you to create a root mysql user password. For the examples below, we will use
MySqlROOTpassword. You should choose something different and more secure, and store it safely. We
will also be creating a MySQL user account named snort, and the password for that account will be
MySqlSNORTpassword, please note the difference between these two MySQL accounts and passwords.

We need to tell snort that it should output it’s alerts in a binary format (to a file) that Barnyard2 can
process. To do that, edit the /etc/snort/snort.conf file, and after line 521 (the commented line starting
with the hash sign) add the following line:

output unified2: filename snort.u2, limit 128

So that lines 521 and 522 now looks like:

output unified2: filename merged.log, limit 128, nostamp, mpls event types, vlan event types}
output unified2: filename snort.u2, limit 128

This line tells Snort to save the alerts in a file called snort.u2.nnnnnnnnnn, where the files are 128 MB
before rolling over to a new file (with nnnnnnnnnn being the Unix Epoch time). Note that we don’t include:
nostamp, mpls event types, vlan event types as recommended. The reason is that we do want the time
stamp on the file, and unless you are working with vlans or mpls, this information can cause issues with
certain barnyard2 output modules (unless specifically configured) and Splunk (if using). Adding those two
options causes Snort to output version 2 of the unified alert in the unified2 file, which can’t be parsed by
some 3rd party tools at this time.

Note on Barnyard2 Version: In the commands below, we will be downloading the current head release
of Barnyard2 rather than a specific release number.

Now download and install Barnyard2 2.1.14:

cd ~/snort_src

wget https://github.com/firnsy/barnyard2/archive/master.tar.gz -O barnyard2-Master.tar.gz

tar zxvf barnyard2-Master.tar.gz

cd barnyard2-master

autoreconf -fvi -I ./m4

Barnyard2 needs access to the dnet.h library, which we installed with the Ubuntu libdumbnet package earlier.
However, Barnyard2 expects a different file name for this library. Create a soft link from dnet.h to dubmnet.h
so there are no issues:

sudo ln -s /usr/include/dumbnet.h /usr/include/dnet.h

sudo ldconfig

Depending on your OS version (x86 or x86 64), you need to point the install to the correct MySQL library.
Run one of the following two lines to configure the build process, depending on your architecture (if you are
unsure which architecture you are running, use the uname -m command (i686 is the same here as i386):

12

Choose ONE of these two commands to run

./configure --with-mysql --with-mysql-libraries=/usr/lib/x86_64-linux-gnu

./configure --with-mysql --with-mysql-libraries=/usr/lib/i386-linux-gnu

Now complete the build and install Barnyard2 to /usr/local/bin/barnyard2:

make

sudo make install

Test Barnyard2 to make sure it installed correctly:

user@snortserver$ /usr/local/bin/barnyard2 -V

______ -*> Barnyard2 <*-

/ ,,_ \ Version 2.1.14 (Build 337)

|o")~| By Ian Firns (SecurixLive): http://www.securixlive.com/

+ '''' + (C) Copyright 2008-2013 Ian Firns <firnsy@securixlive.com>

Once Barnyard2 is installed, the next step is to copy and create some files that Barnyard2 requires to
run:

sudo cp ~/snort_src/barnyard2-master/etc/barnyard2.conf /etc/snort/

the /var/log/barnyard2 folder is never used or referenced

but barnyard2 will error without it existing

sudo mkdir /var/log/barnyard2

sudo chown snort.snort /var/log/barnyard2

sudo touch /var/log/snort/barnyard2.waldo

sudo chown snort.snort /var/log/snort/barnyard2.waldo

Since Barnyard2 saves alerts to our MySQL database, we need to create that database, as well as a ‘snort’
MySQL user to access that database. Run the following commands to create the database and MySQL user.
When prompted for a password, use the MySqlROOTpassword. You will also be setting the MySQL snort
user password in the fourth mysql command (to MySqlSNORTpassword), so change it there as well.

$ mysql -u root -p

mysql> create database snort;

mysql> use snort;

mysql> source ~/snort_src/barnyard2-master/schemas/create_mysql

mysql> CREATE USER 'snort'@'localhost' IDENTIFIED BY 'MySqlSNORTpassword';
mysql> grant create, insert, select, delete, update on snort.* to 'snort'@'localhost';
mysql> exit

We need to tell Barnyard2 how to connect to the MySQL database. Edit /etc/snort/barnyard2.conf,
and at the end of the file add this line (changing password to the one you created above):

output database: log, mysql, user=snort password=MySqlSNORTpassword dbname=snort host=localhost sensor name=sensor01

Since the password is stored in cleartext in the barnyard2.conf file, we should prevent other users from
reading it:

sudo chmod o-r /etc/snort/barnyard2.conf

Now we want to test that Snort is writing events to the correct binary log file, and that Barnyard2 is reading
those logs and writing the events to our MySQL database. We could just start both programs up in daemon
mode and generate some events by pinging the interface (triggering the rule we created earlier), but it’s
better to test one portion at a time.

13

Run Snort in alert mode (the command we run below is how Snort will normally be run when we set it up
as a daemon, except we aren’t using the -D flag which causes it to run as a daemon).

sudo /usr/local/bin/snort -q -u snort -g snort -c /etc/snort/snort.conf -i eth0

Ping the interface eth0 from another computer, you won’t see any output on the screen because Snort wasn’t
started with the -A console flag like before. Once the ping stops, type ctrl-c to stop Snort. you should
see a new file in the /var/log/snort directory with following name: snort.u2.nnnnnnnnnn (the numbers
will be different because they are based on the current time. The snort.log.nnnnnnnnnn is the output file
we created when we first tested Snort. You can delete that file if you want:

user@snortserver:/var/log/snort$ ls -l /var/log/snort/

total 12

drwsrwxr-t 2 snort snort 4096 Nov 7 14:48 archived_logs

-rw-r--r-- 1 snort snort 0 Nov 7 19:53 barnyard2.waldo

-rw------- 1 snort snort 708 Nov 7 14:53 snort.log.1446904397

-rw------- 1 snort snort 1552 Nov 7 19:56 snort.u2.1446922585

We now run Barnyard2 and tell it to process the events in snort.u2.nnnnnnnnnn and load them into the
Snort database. We use the following flags with Barnyard2:

-c /etc/snort/barnyard2.conf The path to the barnyard2.conf file
-d /var/log/snort The folder to look for Snort output files
-f snort.u2 The Filename to look for in the above directory (snort.u2.nnnnnnnnnn)
-w /var/log/snort/barnyard2.waldo The location of the waldo file (bookmark file)
-u snort Run Barnyard2 as the following user after startup
-g snort Run Barnyard2 as the following group after startup

Run Barnyard2 with the following command:

sudo barnyard2 -c /etc/snort/barnyard2.conf -d /var/log/snort -f snort.u2 -w /var/log/snort/barnyard2.waldo \

-g snort -u snort

Note the slash at the end of the first line. This entire command is one line, but is broken into two lines
because of word-wrap issues in this PDF. You can either copy and paste both lines together and they will
run, or if you type the command manually, remove the newline and the trailing slash on the line. For more
information on line continuation in bash, see the sub-section: Escapes and line continuation in Learn Linux,
101: The Linux command line from IBM Developerworks.

Barnyard2 will start up (be patient, it can take some time), and then it will process the alerts in the
/var/log/snort/snort.u2.nnnnnnnnnn file, write them to both the screen and the database, and then
wait for more events to appear in the /var/log/snort directory. use Ctrl-c to stop the process. When
Barnyard2 is processing the events, you should see output similar to:

(...)
Opened spool file '/var/log/snort/snort.u2.1389532785'
Closing spool file '/var/log/snort/snort.u2.1389532785'. Read 8 records
Opened spool file '/var/log/snort/snort.u2.1389535513'
12/06−12:14:28.908206 [∗∗] [1:10000001:1] ICMP test detected [∗∗] [Classification: Generic ICMP event] [Priority: 3] {ICMP} 10.0.0.59 −> 10.0.0.105
12/06−12:14:28.908241 [∗∗] [1:10000001:1] ICMP test detected [∗∗] [Classification: Generic ICMP event] [Priority: 3] {ICMP} 10.0.0.105 −> 10.0.0.59
12/06−12:14:29.905893 [∗∗] [1:10000001:1] ICMP test detected [∗∗] [Classification: Generic ICMP event] [Priority: 3] {ICMP} 10.0.0.59 −> 10.0.0.105
12/06−12:14:29.905927 [∗∗] [1:10000001:1] ICMP test detected [∗∗] [Classification: Generic ICMP event] [Priority: 3] {ICMP} 10.0.0.105 −> 10.0.0.59
Waiting for new data

ˆC∗∗∗ Caught Int−Signal

once you press Ctrl-c to stop barnyard2, it will print information about the records it processed.

We now want to check the MySQL database to see if Barnyard2 wrote the events. Run the following
command to query the MySQL database, you will be prompted for the MySQL snort user password:
MySqlSNORTpassword (not the MySQL root password):

mysql -u snort -p -D snort -e "select count(*) from event"

14

http://www.ibm.com/developerworks/library/l-lpic1-v3-103-1/
http://www.ibm.com/developerworks/library/l-lpic1-v3-103-1/
http://www.ibm.com/developerworks/

If successful, you will then get the following output, showing the 8 events written to the database from the
ICMP request and reply packets (when you ping from a windows system, it will by default send 4 ICMP
messages. If you pinged from another system the count could be different):

+----------+

| count(*) |

+----------+

| 8 |

+----------+

Congratulations, if you have similar output (count greater than 0) as above, then Snort and Barnyard2
are properly installed and configured. We will create startup scripts later to launch both applications as
daemons automatically on boot up.

14 Installing PulledPork

PulledPork is a perl script that will download, combine, and install/update snort rulesets from various
locations for use by Snort. If you would rather install rulesets manually, see Apendix: Installing Snort Rules
Manually.

Install the PulledPork pre-requisites:

sudo apt-get install -y libcrypt-ssleay-perl liblwp-useragent-determined-perl

Download and install the latest PulledPork perl script and configuration files:

cd ~/snort_src

wget https://github.com/shirkdog/pulledpork/archive/master.tar.gz -O pulledpork-master.tar.gz

tar xzvf pulledpork-master.tar.gz

cd pulledpork-master/

sudo cp pulledpork.pl /usr/local/bin

sudo chmod +x /usr/local/bin/pulledpork.pl

sudo cp etc/*.conf /etc/snort

Check that PulledPork runs by checking the version, using the -V flag:

user@snortserver:~$ /usr/local/bin/pulledpork.pl -V

PulledPork v0.7.3 - Making signature updates great again!

user@snortserver:~$

15 Configuring PulledPork to Download Rulesets

There are a few rulesets (groups of rules for Snort) that PulledPork can download. You can configure
PulledPork to download the free blacklist from Talos and the free community ruleset from Snort without
creating a free snort.org account. However, if you want to download the regular rules and documentation
for those rules, you need to create a free account on http://snort.org in order to get a unique Oinkcode
that will allow you to download these newer rulesets.
I recommend you create a snort.org account and get an oinkcode before continuing. Keep this oinkcode
private.

Configure PulledPork by editing /etc/snort/pulledpork.conf with the following command:

15

http://snort.org

sudo vi /etc/snort/pulledpork.conf

Anywhere you see <oinkcode>enter the oinkcode you received from snort.org (if you didn’t get an oinkcode,
you’ll need to comment out lines 19):

Line 19: enter your oinkcode where appropriate (or comment out if no oinkcode)

Line 29: Un-comment for Emerging threats ruleset (not tested with this guide)

Line 74: change to: rule_path=/etc/snort/rules/snort.rules

Line 89: change to: local_rules=/etc/snort/rules/local.rules

Line 92: change to: sid_msg=/etc/snort/sid-msg.map

Line 96: change to: sid_msg_version=2

Line 119: change to: config_path=/etc/snort/snort.conf

Line 133: change to: distro=Ubuntu-12-04

Line 141: change to: black_list=/etc/snort/rules/iplists/black_list.rules

Line 150: change to: IPRVersion=/etc/snort/rules/iplists

We want to run PulledPork manually this one time to make sure it works. The following flags are used with
PulledPork:

-l Write detailed logs to /var/log
-c /etc/snort/snort.conf The path to our pulledpork.conf file

Run the following command:

sudo /usr/local/bin/pulledpork.pl -c /etc/snort/pulledpork.conf -l

PulledPork should finish with output similar to the below (showing the new rules downloaded, in the example
below there are over 30,000 new rules downloaded). You can ignore warnings about not running inline, since
that doesn’t apply to our configuration:

(...)

Rule Stats...

New:-------31209

Deleted:---0

Enabled Rules:----10517

Dropped Rules:----0

Disabled Rules:---20692

Total Rules:------31209

IP Blacklist Stats...

Total IPs:-----1935

Done

user@snortserver:~$

When PulledPork completes successfully as above, You should now see snort.rules in /etc/snort/rules/.

Pulled Pork combines all the rules into one file: /etc/snort/rules/snort.rules. You need to make sure
to add the line: include $RULE PATH/snort.rules to the snort.conf file, or the PulledPork rules will
never be read into memory when Snort starts.

Edit /etc/snort/snort.conf, and add to the end of the file (or at line 548 if you want to keep it in a logical
place):

include $RULE_PATH/snort.rules

16

Since we’ve modified the Snort configuration file (via the loaded rules file), we should test the Snort config-
uration file. This will also check the new snort.rules file that PulledPork created:

sudo snort -T -c /etc/snort/snort.conf -i eth0

You can ignore warnings about flowbits not being checked, as well GID duplicate warnings.

Once that is successful, we want to set PulledPork to run daily. To do this, we add the PulledPork script to
root’s crontab:

sudo crontab -e

You should have PulledPork check daily for updates. The Snort team has asked you to randomize when
PulledPork connects to their server to help with load balancing. In the example below, we have PulledPork
checking at 04:01 every day. Change the minutes value (the 01 below) to a value between 0 and 59, and the
hours value (the 04 below) to a value between 00 and 23. For more info on crontab layout, check here.:

01 04 * * * /usr/local/bin/pulledpork.pl -c /etc/snort/pulledpork.conf -l

Note: If Snort is running, it will need to be reloaded to see the new rules. This can be done with kill

-SIGHUP <snort pid>, or you can restart the Snort service (once that’s created below).

Note: PulledPork can be configured to automatically reboot Snort, but that takes more advanced configu-
ration (and compilation option for Snort) that this guide doesn’t go into. Further information can be found
in the Snort manual and in the PulledPork.conf (line 132 or so).

Additional note about shared object rules: In addition to regular rules, The above section will download
Shared object rules. Shared object rules are also known as ”Shared Object rules”, ”SO rules”, ”pre-compiled
rules”, or ”Shared Objects”. These are detection rules that are written in the Shared Object rule language,
which is similar to C.
These rules are pre-compiled by the provider of the rules, and allow for more complicated rules, and allow
for obfuscation of rules (say to detect attacks that haven’t been patched yet, but the vendor wants to allow
detection without revealing the vulnerability). These rules are compiled by the vendor for specific systems.
One of these systems is Ubuntu 12, and luckily these rules also work on Ubuntu 14 and 16.

16 Creating Startup Scripts

We want to create startup scripts for Snort and Barnyard2 that will launch the services on system startup.
Ubuntu 16 uses the systemD init system, while previous versions of Ubuntu use the Upstart system. If you
are installing Snort on Ubuntu 14, go to the next section. If you are installing Snort on Ubuntu 16, skip the
next section and go to systemD Startup Script - Ubuntu 16.

17

http://blog.snort.org/2016/06/snort-rule-downloads-crontabs-and-you_93.html
http://www.adminschoice.com/crontab-quick-reference
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node24.html

16.1 Upstart Startup Script - Ubuntu 14

We will use Upstart rather than SystemV init scrips to run both Snort and Barnyard2. First we need to
create the Snort startup script:

sudo vi /etc/init/snort.conf

With the following content (note that we are using the same flags as when we tested above, except for the
addition of the -D flag, which tells Snort to run as a daemon). Remember to change eth0 to the interface
you want to listen on:

description "Snort NIDS Service"

stop on runlevel [!2345]

start on runlevel [2345]

script

exec /usr/local/bin/snort -q -u snort -g snort -c /etc/snort/snort.conf -i eth0 -D

end script

Now make the script executable, and tell Upstart that the script exists, and then verify that it is in-
stalled:

user@snortserver:~$ sudo chmod +x /etc/init/snort.conf

user@snortserver:~$ initctl list | grep snort

snort stop/waiting

user@snortserver:~$

Create the Barnyard2 upstart script:

sudo vi /etc/init/barnyard2.conf

We will add two flags here: -D to run as a daemon, and -a /var/log/snort/archived logs, which will
move logs that Barnyard2 has processed to the /var/log/snort/archived/ folder. Note that the line
between script and end script should be a single line:

description "Barnyard2 service"

stop on runlevel [!2345]

start on runlevel [2345]

script

exec /usr/local/bin/barnyard2 -c /etc/snort/barnyard2.conf -d /var/log/snort -f snort.u2 -w /var/log/snort

/barnyard2.waldo -g snort -u snort -D -a /var/log/snort/archived_logs

end script

Make the script executable and check to see that it installed correctly:

user@snortserver:~$ sudo chmod +x /etc/init/barnyard2.conf

user@snortserver:~$ initctl list | grep barnyard

barnyard2 stop/waiting

user@snortserver:~$

Reboot the computer and check that both services are started:

user@snortserver:~$ service snort status

snort start/running, process 1116

user@snortserver:~$ service barnyard2 status

barnyard2 start/running, process 1109

user@snortserver:~$

18

If Barnyard2 does not startup, you may need to delete then re-create the Snort database. Follow the
instructions in Apendix: Troubleshooting Barnyard2 if this is needed.

Skip the next section (since you aren’t installing systemD daemons) and go to BASE - A Web GUI for
Snort.

16.2 systemD Startup Script - Ubuntu 16

Ubuntu 16 has moved to systemD for services / daemons. For more information about creating and managing
systemD servcies, please see this excellent article.

To create the Snort systemD service, use an editor to create a service file:

sudo vi /lib/systemd/system/snort.service

and enter the following content (change the interface name from ens160 if different on your system):

[Unit]

Description=Snort NIDS Daemon

After=syslog.target network.target

[Service]

Type=simple

ExecStart=/usr/local/bin/snort -q -u snort -g snort -c /etc/snort/snort.conf -i ens160

[Install]

WantedBy=multi-user.target

Now we tell systemD that the service should be started at boot:

sudo systemctl enable snort

19

https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units

finally, we want to start the service:

sudo systemctl start snort

to check that the service is running:

systemctl status snort

Next, create the Barnyard2 systemd service. We will add two flags here: -D to run as a daemon, and
-a /var/log/snort/archived logs, this will move logs that Barnyard2 has processed to the
/var/log/snort/archived/ folder. Use an editor to create a service file:

sudo vi /lib/systemd/system/barnyard2.service

with the following content (the exec content line should be one line, through ...archived logs):

[Unit]

Description=Barnyard2 Daemon

After=syslog.target network.target

[Service]

Type=simple

ExecStart=/usr/local/bin/barnyard2 -c /etc/snort/barnyard2.conf -d /var/log/snort -f snort.u2 -q -w /var/log/

snort/barnyard2.waldo -g snort -u snort -D -a /var/log/snort/archived_logs

[Install]

WantedBy=multi-user.target

Now we tell systemD that the service should be started at boot:

sudo systemctl enable barnyard2

finally, we want to start the service:

sudo systemctl start barnyard2

to check that the service is running:

systemctl status barnyard2

Reboot and verify that both services start correctly.

17 BASE - A Web GUI for Snort

BASE is a simple web GUI for Snort. Alternate products include Snorby, Splunk, Sguil, AlienVault OSSIM,
and any syslog server.

Splunk is a fantastic product, great for ingesting, collating, and parsing large data sets. Splunk is free to use
(limited to 500 MB of data per day, which is a lot for a small shop). Please see my article here on integrating
Snort with Splunk Sguil client is an application written in tcl/tk. Snorby is abandoned, and relies on old
versions of many Ruby packages that makes documenting the installation dificult, and a constantly changing
target.

I’ve chosen to use BASE in this guide because it’s simple to setup, simple to use, and works well for
what it does. Both BASE and Snorby are abandoned projects, and while Snorby gives a nice web-2.0
interface, since it is written in Ruby-on-Rails, the Ruby packages it relies on are constantly upgrading,

20

https://sourceforge.net/projects/secureideas/
http://bammv.github.io/sguil/index.html
https://www.alienvault.com/products/ossim

which causes compatibility issues with other required Snorby packages, which causes too many installation
problems.

There is a slight difference between BASE on Ubuntu 14 versus 16: BASE requires PHP 5, which isn’t
available in the Ubuntu 16 archives (Ubuntu has moved on to PHP 7 in this release), so we have to use a
PPA on Ubuntu 16 to install the php 5 packages

UBUNTU 16: BASE requires PHP 5, which isn’t available in the Ubuntu 16 archives (Ubuntu has moved
on to PHP 7 in this release). We use a PPA to install the required PHP 5 packages:

Ubuntu 16 only:

sudo add-apt-repository ppa:ondrej/php

sudo apt-get update

sudo apt-get install -y apache2 libapache2-mod-php5.6 php5.6-mysql php5.6-cli php5.6 php5.6-common \

php5.6-gd php5.6-cli php-pear php5.6-xml

In Ubuntu 14, we can install php 5 from the normal repositories

Ubuntu 14 only:

sudo apt-get install -y apache2 libapache2-mod-php5 php5 php5-mysql php5-common php5-gd php5-cli php-pear

next install Pear image Graph:

sudo pear install -f --alldeps Image_Graph

Download and install ADODB:

cd ~/snort_src

wget https://sourceforge.net/projects/adodb/files/adodb-php5-only/adodb-520-for-php5/adodb-5.20.8.tar.gz

tar -xvzf adodb-5.20.8.tar.gz

sudo mv adodb5 /var/adodb

sudo chmod -R 755 /var/adodb

Download BASE and copy to apache root

cd ~/snort_src

wget http://sourceforge.net/projects/secureideas/files/BASE/base-1.4.5/base-1.4.5.tar.gz

tar xzvf base-1.4.5.tar.gz

sudo mv base-1.4.5 /var/www/html/base/

Create the BASE configuration file:

cd /var/www/html/base

sudo cp base_conf.php.dist base_conf.php

Now edit the config file:

sudo vi /var/www/html/base/base_conf.php

with the following settings (note that the trailing slash on line 80 is required, despite the instructions in the
configuration file):

$BASE_urlpath = '/base'; # line 50

$DBlib_path = '/var/adodb/'; #line 80

$alert_dbname = 'snort'; # line 102

$alert_host = 'localhost';
$alert_port = '';
$alert_user = 'snort';
$alert_password = 'MySqlSNORTpassword'; # line 106

21

While in the base conf.php file, you will also want to comment out line 457 (we don’t want the DejaVuSans
font), and un-comment (remove the two backslashes) from line 459, enabling a blank font. The section for
fonts (begining at line 456) should look like this:

//$graph_font_name = "Verdana";

//$graph_font_name = "DejaVuSans";

//$graph_font_name = "Image_Graph_Font";

$graph_font_name = "";

Set permissions on the BASE folder, and since the password is in the base conf.php file, we should prevent
other users from reading it

sudo chown -R www-data:www-data /var/www/html/base

sudo chmod o-r /var/www/html/base/base_conf.php

Restart Apache:

sudo service apache2 restart

The last step to configure BASE is done via http:

1. Browse to http://ServerIP/base/index.php and click on setup page link (replace ServerIP with the IP of
your Snort Server).

2. Click on Create BASE AG button on the upper right of the page

3. Click on the Main page line

Note: If you read through the BASE configuration file, there are a number of other options you can
implement if you like, a few to note are: SMTP Email alerts, IP Address to Country Support, and user
authentication.

If you have issues, there is a good chance they are related to Barnyard2. Please see Apendix: Troubleshooting
Barnyard2.

If everything is working, go to the next section: Where To Go From Here.

18 Where To Go From Here

I hope this guide has been helpful to you. Please feel free to provide feedback, both issues you experienced
and recommendations that you have. The goal of this guide was not just for you to create a Snort NIDS,
but to understand how all the parts work together, and get a deeper understanding of all the components,
so that you can troubleshoot and modify your Snort NIDS with confidence.

Capturing More Traffic With Snort:

You will probably want to configure your network infrastructure to mirror traffic meant for other hosts to
your Snort sensor. This configuration is dependent on what network equipment you are using. If you are
running Snort as a Virtual Machine on a VMware ESXi server, you can configure promiscuous mode for
ESXi by following the instructions in Appendix: ESXi and Snort in Promiscuous Mode.

For different network infrastructure, you will need to do a little research to configure network mirroring for
your Snort server. Cisco calls this a span port, but most other vendors call this Port Mirroring. Instructions
can be found for Mikrotik (a linux based switch and router product that i like), pfsense, as well as DD-WRT,
which can be configured with iptables, along with any Linux based system. If you have network equipment
not listed above, any search engine should point you towards a solution, if one exists. Note that many
home-user devices may not have the ability to mirror ports.

22

http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst2940/software/release/12-1_19_ea1/configuration/guide/2940scg_1/swspan.html
http://wiki.mikrotik.com/wiki/Manual:CRS_examples#Port_Based_Mirroring
http://pfsensesetup.com/pfsense-bridges/
http://myopenrouter.com/article/port-mirroring-span-port-monitor-port-iptables-netgear-wgr614l
http://superuser.com/questions/753294/mirror-port-via-iptables

More Advanced Snort Configuration

Snort has the ability to do much more than weve covered in this set of articles. Hopefully youve learned
enough through this setup that you will be able to implement more advanced configurations and make Snort
work for you. Some things that Snort is capable of:

• Snort as a Network Intrusion Prevention System (NIPS)

• Multiple remote Snort sensors, for example on different subnets.

• The documentation section of the Snort website has a number of useful articles about more advanced
things you can do with Snort.

Related Guides I have Written
On my website I have a number of articles on Snort, including:

• Snort IPS Inline Mode on Ubuntu

• Installing Snort++ on Ubuntu (Snort 3 Alpha 4)

• OpenAppID on Ubuntu 2.9.9.x

Recommended Reading

• Snort IDS and IPS Toolkit (Jay Beale’s Open Source Security) This is a good book for understanding
how Snort works under the hood. It is a little old, but is still relevant and very detailed.

• Snort 2.1 Intrusion Detection, 2nd Edition Another book by Jay Beale, again this is an excellent book
on the Snort engine and architecture. The supporting tools he references are out of date and no longer
supported, but the rest of the book is excellent.

• Snort Cookbook This book is very helpful in showing how Snort can be run to meet specific needs
(using recipes that describe specific situations).

• Applied Network Security Monitoring: Collection, Detection, and Analysis I havent read this book,
but it is well reviewed, and covers NIDS at a much higher level than the other two books.

Feedback I would love to get feedback from you about this guide. Recommendations, issues, or ideas, please
email me: Noah@SublimeRobots.com.

23

http://sublimerobots.com/2016/02/snort-ips-inline-mode-on-ubuntu/
http://www.engardelinux.org/modules/index/list_archives.cgi?list=snort-users&page=0076.html&month=2012-05
https://snort.org/documents
http://SublimeRobots.com/
http://sublimerobots.com/2016/02/snort-ips-inline-mode-on-ubuntu/
http://sublimerobots.com/2017/01/installing-snort3-in-ubuntu/
Installing OpenAppID with Snort 2.9.9.x on Ubuntu

A Appendix: ESXi and Snort in Promiscuous Mode

Often you want your Snort NIDS to listen on an adapter that receives all traffic for a switch, including
traffic between two hosts that normally wouldn’t be sent to your Snort interface. To get VMware to send
(mirror) this data to the Snort interface, you need to enable “Promiscuous Mode” on the vSwitch (or port
group). Cisco calls this interface a “Mirror Port”. To configure your ESXi server to mirror all traffic to an
interface on a Virtual Machine (such as the interface for our Snort VM), follow the steps below, which are
from VMware’s website7:

1. Log into the ESXi/ESX host or vCenter Server using the ESXi Client.
2. Select the ESXi/ESX host (the VMware Server) in the inventory.
3. Click the Configuration tab.
4. In the Hardware section, click Networking.
5. Click Properties of the virtual switch (the switch that Snort has its listening interface on) for which you
want to enable promiscuous mode.
6. Select the virtual switch or portgroup you wish to modify and click Edit. (Note: you probably want the
switch, not portgroup)
7. Click the Security tab.
8. From the Promiscuous Mode dropdown menu, click Accept.

Note: You do not need to enable promiscuous mode on the network adapters that Snort listens on. When
Snort starts, it automatically puts the interface into promiscuous mode.

When you ping between the two hosts that aren’t the Snort server, but which are connected to the same
network device as the Snort server (and Snort is either connected to a span or mirror port, or promiscuous
mode is enabled for the network device), you should see the events recorded by Snort.

7http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1004099

24

 http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1004099

B Apendix: Installing Snort Rules Manually

If you just want to test Snort manually, and want to use the rules from snort without setting up PulledPork,
follow the instructions below. You will need a Oinkcode (free with an account from snort.org)

We need to un-comment all the #include lines in snort.conf, as the downloaded rules will be a series of rule
files, rather than the one that PulledPork creates:

sudo sed -i 's/\#include \$RULE_PATH/include \$RULE_PATH/' /etc/snort/snort.conf

Download the rules, replacing <oinkcode>with your personal Snort code. you might also want to get a
newer version of the rules (the example below points to the 2.9.8.0 version of the rules):

cd ~/snort_src

wget https://www.snort.org/reg-rules/snortrules-snapshot-2956.tar.gz/<SNORTCODE> -O snortrules-snapshot-2980.

tar.gz

sudo tar xvfvz snortrules-snapshot-2980.tar.gz -C /etc/snort

Move all new files from /etc/snort/etc to /etc/snort (and get rid of /etc/snort/etc folder that was
copied as well):

sudo cp ./*.conf* ../

sudo cp ./*.map ../

cd /etc/snort

sudo rm -Rf /etc/snort/etc

Now modify /etc/snort/snort.conf with any changes from the original snort.conf.
We want the new snort.conf in case it references any new rulesets.

Test the configuration file with Snort:

sudo snort -T -c /etc/snort/snort.conf

You can now run snort as you normally would (with a startup script or manually).

25

C Apendix: Troubleshooting Barnyard2

If barnyard2 is having issues loading events, sometimes deleting all of snort’s unified2 event logs and recreate
the waldo file can help (you’ll loose the events that are saved there)

To do this:

sudo rm /var/log/snort/*

sudo touch /var/log/snort/barnyard2.waldo

sudo chown snort.snort /var/log/snort/barnyard2.waldo

Other troubleshooting steps:

• Reboot the server.

• Be patient. When barnyard2 has a large number of events to process, it can take some time before
they show in the database (say you accidentally ran sudo ping -i 0.001 10.0.0.104 for a minute,
generating upwards of 30,000 alerts on your snort server. This can take some time to process.

• to check for events in the snort database:

mysql -u snort -p -D snort -e "select count(*) from event"

• Are logs being written to /var/log/snort, in the form snort.u2.nnnnnnnnnn?

• Check the system log

cat /var/log/syslog | grep barnyard

• Check if the services are running

upstart or systemD:

service snort status

service barnyard2 status

26

	Introduction
	About This Guide
	Enabling OpenAppID
	Enviornment
	Ethernet Interface Names On Ubuntu 16
	VMware Virtual Machine Configuration
	Installing Ubuntu
	Network Card Configuration
	Installing the Snort Pre-Requisites
	Installing Snort
	Configuring Snort to Run in NIDS Mode
	Writing a Simple Rule to Test Snort Detection
	Installing Barnyard2
	Installing PulledPork
	Configuring PulledPork to Download Rulesets
	Creating Startup Scripts
	Upstart Startup Script - Ubuntu 14
	systemD Startup Script - Ubuntu 16

	BASE - A Web GUI for Snort
	Where To Go From Here
	Appendix: ESXi and Snort in Promiscuous Mode
	Apendix: Installing Snort Rules Manually
	Apendix: Troubleshooting Barnyard2

